Etude des propriétés électriques et magnétiques du composé kagomé organique (EDT-TTF-CONH₂)₆[Re₆Se₈(CN)₆]

reta OLARIU, Cristian VÂJU, Jaćim JAĆIMOVIĆ, Dejan DJOKIĆ, Patrick BATAIL et László FORRÓ

Laboratoire de nanostructures et nouveaux matériaux électroniques Institut de Physique de la Matière Condensée

Nouveaux états électroniques Nanotubes de carbone

Structures biologiques et nano-mécanique

László Forró

Richard Gáal

Cristian Vâju

Areta Olariu

Laboratoire de nanostructures et nouveaux matériaux électroniques Institut de Physique de la Matière Condensée

Nouveaux états électroniques

László Forró

Richard Gáal

Cristian Vâju

Areta Olariu

La Résonance Paramagnétique Electronique

Basse fréquence 9.4 GHz

Haute fréquence 210, 315, 420 GHz Champ magnétique 0-16 Tesla

Pression hydrostatique jusqu'à 16

Plan

- Les systèmes kagomé
- Propriétés structurales du système organique (EDT-TTF-CONH₂)₆ [Re₆ Se₈ (CN)₆]
- Densité d'états électroniques
- Propriétés macroscopiques transport et susceptibilité macroscopique
- Etude par RPE à pression ambiante et sous haute pression hydrostatique

Les systèmes kagomé à caractère localisé

Systèmes antiferromagnétiques Frustration géométrique

Nombre macroscopique de configurations

Liquide de spin – caractère fluctuant jusqu'à T=0!

J. T. Chalker and J. F. Eastmond, PRB 46, 14, 201 (1992) Herbertsmithite – S=1/2 Shores et al, JACS 127, 13462 (2005)

Les systèmes kagomé à caractère itinérant

Peu d'études dans la littérature !

Ohashi et al, PRL 97, 066401 (2006)

Imai et al, Phys. Rev. B 68, 195103 (2003)

Demi-remplissage: le caractère métallique stable malgré la repulsion coulombienne.

Sur plan experimental

Co₃Sn₂S₂ – Vaqueiro et al, Sol. State Sci. 11, 513 (2009)

(EDT-TTF-CONH₂)₆[Re₆Se₈(CN)₆] – Baudron et al, JACS 127, 11785 (2005)

$(EDT-TTF-CONH_2)_6 [Re_6Se_8(CN)_6]$

basse température T<150 K: structure triclinique P-1

Densité d'états

Imai et al, PRB 68, 195103 (2003) Demi-remplissage Coexistence de la phase métallique avec des moments magnétiques localisés

Baudron et al, JACS 127, 11785 (2005) Le système n'est pas demi-rempli !

Propriétés de Transport

Susceptibilité macroscopique

Baudron et al, JACS 127, 11785 (2005)

 $\mu_{\text{eff}} \sim 2.2 \mu_{\text{B}}$ par formule chimique, moment magnétique important!

Comportement Curie-Weiss avec des corrélations antiferromagnétiques J ~175 K

a Résonance Paramagnétique Electronique

Asymétrie de la raie: caractère métallique 2 raies: intrinsèque & défauts dans le plan kagomé

Origine de la largeur de raie:

• électrons de conduction – couplage spin-phonon – caractère métallique

Effet de la pression hydrostatique

210 GHz

Conclusion

 $(EDT-TTF-CONH_2)_6$ [Re₆ Se₈ (CN)₆] première réalisation d'un système kagomé organique avec un caractère métallique pour T>150 K

 Coexistence des moments localisés avec des porteurs de charge délocalisés.

 Etat métallique très fragile. La présence de défauts induit une localisation des porteurs de charge.

 Sous pression hydrostatique-> le « cross-over » dimensionnel se déplace vers les hautes températures